
ISRAEL JOURNAL OF MATHEMATICS 119 (2000), 349-377 

DIVISORS ON VARIETIES OVER VALUATION DOMAINS 

BY 

H A G E N  KNAF 

Mathematisches Institut der Universit~t Heidelberg 
Im Neuenheimer Feld P88, 691Z0 Heidelberg, Germany 

e-mail: ~engri@mathi.uni-heidelberg.de 

ABSTRACT 

Let X be a separated integral normal scheme of finite type over the wl- 

uation ring Or. It is shown that the set ~Dcoh(X) of coherent fractionary 

Ox-ideals J C K(X)  satisfying the relation J = J := (C)x : (Ox : J ) )  

- -  the so-called divisorial Ox-ideals - -  forms a group With the composi- 

tion law (2:, J )  ~-~ ~'-'-~. This group posesses a natural  embedding 

div: :Dcoh(X ) -+ Div(X) ~ 1-I v ( g ( x ) ) ,  
vEv 

where Div(X) denotes the group of Weil divisors of the generic fibre X 
of X I Spec(Ov), and V is a set of valuations of K(X) determined by a 

subset of the generic points of the fibres X xo~ s(7"), 7, E Spec(Ov) \ 0. 
The image Div(X) of div is proved to satisfy Div(X) = Div(X) @ Ver(X) 

with a subgroup Ver(X) C l-Ivev v(K(X)) .  The structure of Ver(X) is 
determined provided that  X satisfies additional conditions - -  for example, 
if X is projective over Spec(C)v). 

These facts are deduced from general results on the semigroup 2:)coh(X ) 
of coherent divisorial C)x-ideals on an integral scheme X: A criterion 

for T)coh(X ) to be a group based on the notion of so-called Priifer v- 
multiplication rings, and a valuation theoretic description of this group 
using valuations of K(X) naturally associated to X. The considerations 
leading to these results show that  T)coh(X ) can be understood as an 
ideal theoretic generalization of the group of Weil divisors on a normal 
noetherian scheme. 

Following this idea a criterion for ~)coh (X), X a separated integral normal 

C)v-scheme of finite type, to be equal to the group of Cartier divisors on 
X is given. The criterion is obtained by showing that  for any point ~c on 

such a scheme the local generalized Well divisor groups ~coh (Spec(O,v,x)) 
exist and by analyzing the structure of these groups. 
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Introduction 

Let Ov be the valuation ring of a non-archimedian valuation v of a field K.  Let 

A' be an integral separated Or-scheme of finite type such that for some n E N 

all irreducible components of all fibres of X I Spec(Ov) have dimension n. Such 

schemes will in the sequel be called O.-varieties. 

The aim of this paper is to introduce a generalization of the group of Weil 

divisors for normal Or-varieties, and to study the structure of this group using 

valuations of the field F of rational functions on X, that are naturally associated 

to X. 

The notion of Well divisors can in fact be generalized to a much larger class 

of non-noetherian schemes than just O.-varieties: It is well-known that the Weil 

divisors of an integral separated normal noetherian scheme X are in bijection 

with the Ox-submodules iT of the constant sheaf F ,  that are of finite type and 

satisfy the relation 

iT = j := ( O x :  ( O x :  iT)). 

Ox-modules satisfying iT = 3 are called divisorial and the set of divisorial 

Ox-submodules of F is denoted by Dr - -  the meaning of the subscript will 

become clear some lines below. 

:Dcoh(X) forms an abelian group with the composition (Z, J )  ~ Z .  iT. This 

group is isomorphic to the group of Weil divisors Div(X); the isomorphism is 

given using valuations: For any prime divisor P of X denote by vp the corre- 

sponding discrete valuation of F.  For any iT E Dcoh(X) the stalk iT~ in the 

generic point x E P of P is a principal fractional Ox,x-ideal apOx,x. One can 

therefore define vp(iT) := vp(ap). The map 

div: Dr -+ Div(X), J ~ (vp(iT))p prime divisor of X 

is an isomorphism of groups - -  see [Fos], Ch. I. 

The first section of the present article deals with the problem of adapting this 

approach to Weil divisors to non-noetherian schemes. More precisely let X be 

an integral scheme with coherent structure sheaf and field of rational functions 

F.  The set Dcoh(A') of coherent divisorial Ox-submodules J C F is an abelian 

semigroup with the composition law given above. Coherence is needed in the 

definition to ensure that divisoriality is a local notion. 

:Dcoh(A') is the candidate for the sheaf theoretic side of the generalization of 

Weil divisors. Weil divisors are required to form a group rather than a semigroup; 

the first of the two main results in section 1 deals with this aspect: 
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(1) Let X be an integral scheme with coherent structure sheaf. Let P(X) be 

the set of points x G X such that the maximal ideal ~):,~ of the local ring O)~,x 

is an associated prime of the O~,x-module F /Ox , z  --  see subsection 1.1 for the 

definition. 

Assume that X satisfies the condition 

Vx E p(X): Ox,~ is a valuation ring. 

Then/)cob(X) is a group. 

The condition (*) is the non-noetherian analogue of being regular in 

codimension one, which ensures the existence of the group of Weil divisors in 

the rtoetherian case. 

Assuming (*) the structure of the group /)coh(X) can be described to some 

extent using certain valuations associated with X: 

(2) Let X be an integral quasi-compact separated scheme with coherent structure 

sheaf. Then the set Val(A') := {x 6 X I Ox,x is a valuation ring} has maximal 

elements with respect to specialization. 

For each maximal element x of Val(X) choose a valuation of F with valuation 

ring Ox,z and denote the set of valuations obtained in this way by ~;(X). Then 

the map 

div:7:)coh(X) ~ 1--[ vF 
v~v(x) 

can be defined as in the noetherian case and gives an injective group 

homomorphism. 

The image of div is denoted by Div(X) and should be understood as the ana- 

logue of the usual definition of Well divisors in the noetherian case. Unfortunately 

the map div is in general not surjective, which restricts its use to determine the 

structure of Dcoh(X), and shows that this structure can be rather complicated. 

The results of section 1 are consequences of the theory of Priifer v-multipli- 

cation rings; the relevant parts of this theory are summarized in subsection 1.1. 

In section 2 the general results of section 1 are applied to the class of Or- 

varieties as defined at the beginning of this introduction: As a direct consequence 

of results of M. Nagata and G. Sabbagh it is first shown that any O,-variety X 

has coherent structure sheaf and satisfies condition (*) if one furthermore requires 

X to be normal. Hence for a normal Ov-variety, Z)coh(A') turns out to be a group. 

Understanding the structure of this group is then the main goal of subsection 

2.1. In view of the result (2) this amounts to determining the set Val(X) resp. 

the set of valuations V(X) corresponding to the maximal elements of Val(A') with 
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respect to specialization. Having done this one finally has to calculate the image 
of the div-map introduced in (2). 

The determination of Val(X) is carried out using an affine generalization of 

Zariski's Main Theorem due to C. Peskine; the result is quite intuitive: 

(3) A normal Or-variety X satisfies 

Val(X) = X (1) U U Gen(X xo~ ~(~)), 
"PESpec(Ov) \ 0 

where X (1) denotes the generic points of the Weil prime divisors on the generic 

fibre X of X,  and Gen(X xo~ g(p)) is the set of generic points of the fibre of 
XiOv over 7~. 

At least in the case of a closed structure morphism X --+ Spec(O,) it is now 

simple to write down the set Y(X) and consequently the div-homomorphism: 

(4) Let X be a normal O,-variety with closed structure morphism and V the 

set of valuations of its field of rational functions F corresponding to the local 

rings Ox,x, x E Gen(X Xov tc(•v)), My ~ Ov the maximal ideal; then the div- 
homomorphism looks like 

div: 7)coh(X) -+ Day(X) r ~ v(F), 
vEV 

where Div(X) is the group of (ordinary) Weil divisors of the generic fibre X of 
X. 

The image of div can be calculated (to a certain extent) due to the following 

fact, interesting in itself: The ideal sheaf JR of the closed subscheme P C_ A" 

obtained by taking the Zariski closure of a Weil prime divisor P of the generic 

fibre X is a coherent divisorial Ox-ideal. This fact can be used to embed Div(X) 

into ~)coh(,~'); using the Prfifer ring Ov := Nvev Ov the structure of Div(X) can 
now be described as follows: 

(5) Let X be a normal Or-variety with closed structure morphism, function 

field F and generic fibre X.  Then: 

1. There exists a subgroup Ver(X) C I-IvevvF such that Div(Spec(Ov)) C__ 

Ver(X) and Div(X) = Div(Z) G Ver(X). 

2. If the generic points of the closed fibre of X possess an aJ:fine open 

neighborhood one has Ver(X) = Div(Spec(Ov)). 

There is also a version of this result without the assumption of a closed 

structure morphism -- see subsection 2.1. 

The group of Cartier divisors CaDiv(A') on an integral scheme A' can always 

be embedded into the semigroup/)coh(X) viewing Cartier divisors as invertible 
subsheaves of the constant sheaf F. 
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In the final subsection 2.2 the local Weil divisor group Div(Spec(Ox,x)) in a 

point x of a normal Or-variety X is investigated: The group Div(Spec(Ox,x)) 

splits in a way analogous to (5 1.) into a horizontal part defined by certain prime 

divisors of the generic fibre of X and a vertical part defined by a subset of V. 

Using this result a criterion for the equation CaDiv(X) = Div(X) to hold is 

given. Since the statement of both results is quite technical we omit a summary 

at this point and refer the reader directly to subsection 2.2. 

The investigation presented in this article was motivated by the results on 

curves over valuation rings and their connection to constant reductions of alge- 

braic function fields of transcendence degree 1 obtained by the members of a 

working group around Prof. P. Roquette at the universities of Heidelberg and 

Bordeaux - -  see [G] and the references given in that paper. It is a generalization 

of a part of the author's doctoral thesis [Knl]. 

Roquette's paper [Roql] and Kani's thesis [Kanl] had a particular influence 

on the present work: In [Roql] a comparison is made between the Weil divisors 

of the generic fibre of a projective (.0v-variety X with the Weil divisors of the 

closed fibre X xo~ O~/,~., provided the fibres of A' are smooth. 

Kani develops a divisor theory for field extensions LIK equipped with a set 

M of K-trivial valuations of L. He uses it to investigate Or-curves C x g  (.0., 

v E M, where C is a smooth proper K-curve, with the aim to give a so-called 

non-standard proof of the Mordell-Weil theorem for the jacobian of a curve. 

ACKNOWLEDGEMENT: Parts of this paper were written during a visit at the 

University of Stellenbosch/South Africa. I want to express my thanks for the 

financial support I received from the university during the visit. Furthermore, I 
owe thanks to Barry Green for several helpful discussions on the content of this 

paper and to Oliver Delzeith for many conversations about divisoriality. 

1. Divisorial ideal sheaves and divisors on integral schemes 

The purpose of this section is to introduce and study the abelian semigroup 

/)cob(X) of coherent divisorial Ox-ideals on an integral scheme X with coherent 

structure sheaf. The main emphasis is put on the problems of finding properties 

of the scheme X ensuring that Dcoh (X) is a group and to describe this group using 

valuations of the function field K(X) naturally associated to X. The discussion of 

these problems shows the beautiful analogy as well as the main differences to the 

case of separated noetherian normal schemes, in which Dcoh(X) is isomorphic to 

the group of Well divisors on X, the isomorphism given via the discrete valuations 

associated to prime divisors of A'. 
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The results of this section are based on the theory of Priifer v-multiplication 
rings. To improve accessibility of the article the section starts with a summary 

of the relevant results on this type of ring. 

1.1 A SUMMARY OF THE AFFINE CASE. Throughout the whole subsection let 

A be a domain with field of fractions F. We will frequently consider valuations v 

of the field F,  which are always assumed to be non-archimedean. Their valuation 

ring is denoted by Or, its maximal ideal by ~av. Usually in this article valuation 

rings will occur as localizations of certain domains. Given a valuation ring O the 

associated valuation v: F --+ F, F a totally ordered abelian group, is unique up 

to order preserving isomorphisms of F. The considerations, statements etc. in 

this article are independent of the particular choice of v; therefore by abuse of 

language we will talk about the valuation v corresponding to O. 

Denote by ~(A) the set of non-zero fractional ideals of A. In the sequel we 

will consider several subsets of 9V(A) that can be best defined in terms of *- 

operations on 9V(A): A , - o p e r a t i o n  on ~'(A) is a map ~-(A) ~ ~'(A), I ~ I* 

with the properties 

1. VI C ~'(A): I** = I*, 

2. (VICgV(A):IC_I*) and ( I C  J* ~ I* C_ J*), 

3. ~r �9 A, I �9 .T(A): (xA)* = xA,  (zI)* = xI*. 

Fractional ideals with the property I = I* are called , - ideals .  A ,-ideal I with 

the property I = I~, I0 a finitely generated fractional ideal, is called *-finite. 
The sets of ,-ideals resp. *-finite ideals are denoted by :D* (A) resp. :D~n(A ). They 

both form abelian semigroups with the composition 

(I, J)  ~ (I  J)* 

and A is the neutral element. This composition is well defined due to the 

equations 

(I  J)* = (Ig*)* = (I 'J*)*.  

See [Gill, Ch. V, w for the basic theory of ,-operations. 

One of the most important examples of ,-operations is given by the map 

3C(A) --+ ~'(A), I ~ I ' :=  (A: (A: I)). 

It is usually called the v-opera t ion .  The corresponding semigroups are denoted 

by 7)V(A) and T)~n(A ). To emphasize their connection with divisor theory we 

will follow those authors calling the elements of these semigroups divisor ia l  

resp. d iv isor ia l ly  f in i te ly  g e n e r a t e d  ideals rather than v- and v-finite ideals. 

See [Fos], Ch. I or [Gil], Ch. V, w for the basics on divisorial ideals. 
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One of the tasks in multiplicative ideal theory is to determine those domains 

A for which/)V(A) resp. /~n(A) form groups. It is well-known that/~V(A) is a 

group iff A is completely integrally closed, a property which is too restrictive for 

our purposes. 

A characterization of those domains A for which :D~n(A ) is a group is also 

known and the corresponding class of domains is more interesting. Following the 

literature such a domain is called a Pr i i fe r  v -mul t ip l i ca t ion  r ing  (abbreviated: 

PvM-r ing ) .  To formulate the characterization of PvM-rings one needs (weakly) 

associated primes as introduced in [Bou], Ch. VI: Let M be an A-module. The 

prime ideal v E Spec(A) is called an assoc ia ted  p r ime  of  M if there exists 

m E M \ 0 such that 

_D AnnA(m) = {a E A I am = 0} 

and ~ is minimal subject to this condition. 

We will use associated primes of the A-module F/A.  The set of associated 

primes of this module is denoted by P(A). Any ~ E P(A) is a minimal prime 

ideal over an ideal of the form (aA : hA), a, b E A, b ~ aA. 

The relevance of associated primes of F / A  for questions concerning divisoriality 

is shown by the following results: 

1.1 ([Gla], Lemma 6.2.6, [Vas2], Prop. 3.3): In any domain A one has: 

1. VIE/)V(A):  I = N-pEp(A) IA~,. In particular this holds for A itself. 

2. VI, J E/)v(A): I -- J ~:~ IA~  = JA~, Vp E P(A). 

Remarki The two articles cited both assume A to be coherent, which is not 

necessary. 

The desired characterization of PvM-rings is the content of the following result: 

1.2 ([Mot-Zaf], Theorem 3.2 and [Zaf], Theorem 2): Let A be a domain. 

1. A is a PvM-ring iff the following conditions are satisfied: 

(a) V~ E P(A): A~ is a valuation ring, 

(b) Va, b E A: aAMbA E l)~n(A ). 

2. I rA  is normal and aA n bA is finitely generated for any pair a, b E A then 

A is a PvM-ring. 

Note that  due to (1.1 1.) a consequence of (1.2 1 (a)) is that  PvM-rings are 

normal. 

A special case of (1.2 2.) is of particular interest in this article: Recall that  

an A-module M is called cohe ren t  if it is finitely generated and every finitely 



356 H. KNAF Isr. J. Math.  

generated submodule of M is of finite presentation. A ring A is called a c o h e r e n t  
r ing  if it is a coherent A-module, that is if every finitely generated ideal of A is 

finitely presented. In a coherent ring A the intersection of two finitely generated 

ideals is finitely generated ([Gla], Th. 2.3.2); hence one deduces from (1.2): 

1.3: Every normal coherent domain is a PvM-ring. 

This result includes the case of normal noetherian domains, where P(A) consists 

exactly of the prime ideals of height 1 and ~ n  (A) is the free abelian group over 

P(A). The latter is proved by using the discrete valuations corresponding to the 

local rings Av, P E P(A). A similiar procedure can be applied in the case of 
PvM-rings, but the situation is more complicated. 

Let A be a normal domain and ~ a family of valuations of F such that A = 

Aver  o r .  According to [Gill, Th. 32.5 the assignment 

I ~4 N IOv =: I v 
vEV 

is a *-operation. The corresponding two semigroups are denoted by ~DV(A) and 

~DVn(A). This *-operation has the property IO~ = IVO~ for every I E ~'(A), 

v E V. In particular, for any I E :DVn(A), 

v(I) := min(va I a E I) 

exists. This gives the opportunity to define a map 

(1) div: Dfirn(A) ~ 1-I vF, I ~ (vI)vev. 
vEY 

div is an injective homomorphism of semigroups. In general div is not surjective 

- -  see [End], Ex. II-18 for counterexamples. 

The link between the *-operation I ~ I v and the v-operation is given by the 

following surprising result: 

1.4 ([Gil], Prop. 44.13): Let A be a normal domain and )2 a family of valuation 

rings such that A = Aver  Ov and Ov = AAn]~4v for all v E 12. Then for any 

finitely generated fractional ideal I the equation I v = I holds, i.e. :DVn(A) = 

I)~n(A ) as semigroups. 

As an important consequence of this theorem formula (1) gives a description 

of the structure of :D~n(A ) in terms of valuations of the field of fractions of 

A. In the case A is a PvM-ring one could use the family ~ of valuations of F 

corresponding t o t h e  local rings A~,, ~, E P(A), as is suggested by (1.2 1.) and 
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(1.1 1.). Since there may be containment relations among the primes in P(A) this 

decision would have the disadvantage of encorporating redundant information 

into the homomorphism div corresponding to the family 1). One therefore follows 
another track to find a suitable family V: 

The map 

IoCI finitely generated 

is a *-operation called the t -opera t ion  and defines the semigroup 7)*(A) of t- 

ideals. The set of integral t-ideals I <1 A has maximal elements with respect to 

inclusion. Every integral t-ideal I <1 A is contained in a maximal t-ideal and 

maximal t-ideals are prime. The set of maximal t-ideals will be denoted by 

tMax(A). 

Following M. Zafrullah we furthermore call a prime p E Spec(A) a valued 

pr ime if the local ring Ap is a valuation ring. The set of valued primes is 

denoted by Val(A) or Val(Spec(A)), if we want to emphasize the geometric point 

of view. 

The use of t-ideals for our purpose is summarized in the following results of 

M. Griffin, J. L. Mott and M. Zafrullah: 

1.5 ([Grill, Prop. 4, [Grill, Wh. 5, [Mot-Zaf], Prop. 4.1): Let A be a domain. 

Then: 

1. A = NT~etMax(A) A•, 
2. A is a PvM-ring ifftMax(A) C_ Val(A), 
3. A is a PvM-ring iffVal(A) = Spec(A) n/)t(A).  

From this result the following information relevant for this article can be ex- 
tracted: For a PvM-ring A the set Val(A) has maximal elements and the set of 
maximal elements equals tMax(A) (1.5 2.+3.). Furthermore, by (1.5 1.) and 

(1.4) the set of valuations defined by the valuation rings A~,, p E tMax(A), can 

be used to define a homomorphism div via formula (1) describing 7)~n(A ). Note 
that there are no containment relations among the members of tMax(A). The 

special family of valuations defined by tMax(A) will in the sequel be denoted by 

13(A). 
Beside the normal coherent domains the so-called rings of Krull type form 

another large class of PvM-rings. They will occur as local rings of certain schemes 

in this article. A ring of Krul l  t ype  is a domain A such that there exists a 

family of valuations V of its field of fractions F with the properties 

1. A = Nvev or, 
2. for every v E ]): Ov = A.~,nA, 
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Applying (1.4) 

homomorphism 

3. for every a 6 A \ 0 the set {v 6 1) I va > 0} is finite. 

The family l) is called a def in ing  fami ly  for A. 

1.6 ([Grill, Theorem 7): Every ring of Krull type is a PvM-ring. 

to the defining family )2 of a ring of Krull type gives a 

d iv : / )~ . (A)  --+ + v F  
v6Y 

into the direct sum instead of the direct product of the value groups. This is due 

to condition 3 in the definition and more similiar to the noetherian case. Note 

also that there are many defining families of one and the same ring of Krull type. 

1.2 THE CASE OF INTEGRAL SCHEMES. Throughout the whole subsection let 

X be an integral scheme with field of rational functions F.  We will furthermore 

need to assume that the structure sheaf Ox C E_ is a coherent sheaf; here F_ 

denotes the constant sheaf over F. 

We will frequently use two facts about coherent Ox-submodules ,.7 C F: 

(A) If the structure sheaf Ox is coherent, then for every affine open U C_ X 

the ring Ox(U) is a coherent ring. The affine scheme X = Spec(A) has 

coherent structure sheaf iff the ring A is coherent. 

(B) On an integral scheme ,t' with coherent structure sheaf a Ox-submodule 

,7 C F is coherent iff it is of finite type. 

Property (B) is proved as follows: Since coherence is a local property it suffices 

to treat the affine case ,l' = Spec(A). In this case a Ox-submodule ,,7 C F of 

finite type has the form J, where J is a fnitely generated A-submodule of F.  It 

is well-known ([Gla], Th. 2.3.2 (3)) that torsion free finitely generated modules 

over a coherent ring are coherent, which proves the assertion. 

Ox-modules ,.7 C F are usually called f r ac t iona l  Ox- ideals .  If Z, ,.7 are 

fractional Ox-ideals one can form the fractional Ox-ideals Z. J and (5[ : 3"). We 

define 

$ := ( o x :  ( o z :  3")) 

for any fractional Ox-ideal 3" and call 3" a d ivisor ia l  O x - id ea l  if the equation 

J = 3  

holds. 

In this generality the concept of divisoriality does not behave nicely, since the 

operation 3. ~ 3 does not commute with taking stalks. Therefore we restrict our 
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considerations to coherent or, what by (B) amounts to the same, fractional (gx- 

ideals of finite type: Let Dcoh(X) denote the set of coherent divisorial Ox-ideals. 

The elements of Dcoh(X) are characerized by their local behavior: 

LEMMA 1.7: Let f l  be a coherent fractional Ox-ideal. Then: 

1. Vx 6 X: (3)x  = ~ ,  

2. O'~ E ~)coh(X) r162 VX E X: Yx E ~)~n(OX,x). 

In particular, for any coherent fractional Ox-ideal f f  one has f f  6 :Dcoh(X). 

Proo~ 1. It is straightforward to prove that for a Ox-ideal f l  C F of finite type 

the equations (Ox : f l)x = (Ox,x : J~) for all x 6 X hold. If in addition ,7 is 

coherent then by lEGAl], 0, 5.3.8 ((gx : f l)  is coherent too - -  in particular of 

finite type. This proves the assertion. 

2. The implication ~ follows from point 1. For any fractional Ox-ideal f l  the 

inclusion f l  C 3 holds. Assuming divisoriality of all stalks ,]~ yields Jx  = (3)x  

- -  again due to point 1. | 

By [EGA1], 0, 5.3.7+5.3.8 the fractional Ox-ideals Zf l  and (Z : fl)  are coherent 

if Z and , ]  are coherent. This fact and Lemma 1.7 show that the map 

 coh(X) x Z coh(X) Vcoh(X), (Z, J )  Z:7 

is welldefined. It gives ~Dcoh(,'~' ) the structure of a commutative semigroup with 

neutral element Ox - -  remember that Ox is assumed to be coherent. 

On an affine scheme X = Spec(A) with coherent structure sheaf a coherent 

fractional Ox-ideal f l  is divisorial iff it has the form f l  = J,  where J C_ F = 

Quot(A) is a coherent A-module satisfying J = J. Therefore one has: 

1.8: For the aftine scheme X = Spec(A) the map 

/)coh(X) --4/)~n(A) , J ~ J ( X )  

is an isomorphism of semigroups. In particular the elements o[l)~n( A ) are finitely 

generated. 

The semigroup /)coh(X) is the candidate for the sheaf theoretic side of our 

generalization of Weil divisors. These generalized Weil divisors should - -  as in 

the noetherian case - -  form a group, a requirement which forces us to generalize 

(1.2) to schemes: 
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Definition 1.9: A point x on an integral scheme X is called assoc ia ted  po in t  

of  A' if ~x ,~  E P(Ox,x) holds for the maximal ideal ~x ,~  of the local ring Ox,x. 

The set of associated points of A' is denoted by p(X). 

The relation between associated points and associated prime ideals of rings of 

sections is the best possible: 

LEMMA 1.10: Let X be an integral scheme and let U C_ X be an aft/he open 

subset. Then the equation P(X) N U = P(Ox(U)) holds. 

Proof'. For any domain A and any p E Spec(A) one has p E P(A) <:~ pap E 

P(Ap) ([Uer], Prop. 5). | 

As intended we can now identify a class of non-noetherian schemes for which 

/)cob(X) is a group: 

THEOREM 1.11: Let X be an integral scheme with coherent structure sheaf 

satisfying the condition: 

(*) The local rings Ox,x, x E p(X), are valuation rings. 

Then: 

1. Dcoh(X) is a group. 
2. For every a///ne open set U C_ X the ring Ox(U) is a PvM-ring. In 

particular the scheme X is normal. 

Proof: One shows that  any ,.7 E/)coh(X) satisfies (Ox : ,7) E T)coh(X) and the 

equation [,7(Ox : ,7)]^= Ox. 
Coherence of ,7 yields coherence of (Ox : ,7). By Lemma 1.7 divisoriality of 

(Ox : ,7) is equivalent to divisoriality of all stalks (Ox : ,7)x = (Ox,x : ,7~), 
x E X. By assumption and Lemma 1.7 point 2 the stalks 0*x are divisorial, hence 

(Ox,x : ,7~) is divisorial by a basic property of divisorial ideals in domains ([Gill, 

Th. 34.1 (3)). 
Finitely generated fractionary ideals of a valuation domain are principal hence 

divisorial; using this fact for any x E p(A') one has 

([,7(oz : : [,Tx(ox,  : Jr)F= : oz, . 

Using Lemma 1.10 and (1.1 2.) this shows that for any affine open set U C_ k' 

one has [J(Ox : J ) ] ^ ( U )  = [`7(U)(Ox(U): `7(U))] ^ =  Ox(U) and therefore 

[`7(ox : ,7)]^= oz .  
The second statement follows from (1.3): By (A) at the beginning of this 

subsection the rings Ox(U) are coherent. They are normal by condition (*), 

Lemma 1.10 and (1.1 1). | 
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The condition (*) of Theorem 1.11 is the non-noetherian analogue of the con- 

dition of being regular in codimension one ([Ha], Ch. II - 6), which ensures a good 

divisor theory in the case of (separated) integral noetherian schemes. We could 

extend this analogy by using the valuation rings Ox,x, x C P(X),  to obtain in- 

formation about the structure of the group ~Dcoh(X) as is done in the noetherian 

case. For the same reasons as in the affine case - -  redundance due to contain- 

ment relations among these local rings - -  we will not follow that  path. Instead 

we will use a set of valuation rings without this disadvantage. 

Definition 1.12: Val(X) := {x E X I O~,~ is a valuation ring}, where X is an 

arbitrary scheme. 

The set Val(A') is closed under generalization: For x, y E X define x -,~ y as 

y C {x} =Zariski closure of {x}. Localizations of valuation rings are valuation 

rings too; hence one finds that y e Val(X) and x -,~ y implies x E Val(X). 

The spectrum of a valuation ring is totally ordered with respect to inclusion. 

As a consequence specialization gives Val(X) a treelike structure: For any y E 

Val(X) the set Y := {x E Val(X)I x -,~ y} has the property: For x l ,x2  C Y 

either xl  "~ x2 or x 2 . x ~  Xl. 

The valuation rings we are searching for to describe Dcoh(X) are the maximal 

elements of (Val(X),-,~) - -  provided they exist. Denote the set of maximal 

elements of (Val(X),-,~) by MaxVal(X). 

THEOREM 1.13: Let X be a quasi-compact integral scheme with coherent struc- 

ture sheaf, satisfying condition (,) of Theorem 1.11. Then every element x C 

Val(X) specializes into a maximal element of (Val(X), ~-*). 

Proof'. Quasi-compactness yields the existence of an affine open cover X = 

?~ U ,  ~ . . Ui=l i. By Theorem 1.11 the rings Ox(Ur i 1, . , r ,  are PvM-rings. 

Let x E Val(X) be an arbitrary point, x E U1 say. Then by (1.5 3.) there 

exists xl  e MaxVal(U1) C_ Val(X) such that x -,z xl. If {xl} M Val(X) r {xl} 

there exists i r 1 such that {xl} M Val(Ui) r {xl}. Again by (1.5 3.) one can 

therefore choose x2 e MaxVal(Ui) such that xl  "--* x2. 

This procedure gives a specialization chain x -,~ xl ",~ x2 "~ . . .  ",~ x8 with 

s _< r and x8 E MaxVal(X). I 

We have finally reached our aim of describing the structure of :Dcoh(X) using 

valuations of F = K(X) :  For any x E MaxVal(X) of the quasi-compact integral 

scheme X choose a valuation v of F such that Ov = Ox,~. Denote the family of 

valuations of F obtained in this way by V(X). 
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If the scheme X is separated, a valuation v �9 V(X) uniquely determines a 

point x �9 MaxVal(A') by the valuative criterion for separatedness (lEGAl], 1, 

8.5.5). 
Observe that for a fractional Ox-ideal of finite type every stalk fix, x �9 VaI(X), 

is a principal fractional ideal aOx,x. Given a valuation v of F with valuation 

ring Ox,x one can therefore define 

v ( J )  := v(a) = min(v(b)[ b �9 ,.7~). 

THEOREM 1.14: Let X be a separated, quasi-compact, integral scheme with 
coherent structure sheaf, satisfying condition (,) of Theorem 1.11. Then the 
assignment 

div: Dcoh(X) --+ I I  vF,(7 ~ (v(J))~ev(x) 
v~V(X) 

is an injective group homomorphism. 

Remark: div is in general not surjective; its image will be denoted by Div(X). 

According to our approach to Weil divisors Div(X) is the analogue to the group 

of Weil divisors on an integral, separated, noetherian, normal scheme. 

Proof: The existence of the family V(X) follows from Theorem 1.13. 

div is a homomorphism, since taking stalks in the points x E MaxVal(X) 

turns the multiplication in Ocoh(X) into (ordinary) multiplication of principal 

fractional ideals. 

Injectivity: Let d iv(J )  = 0 for some ,.7 E ~[~coh(,~). Since by condition (,) 

p(X) c_ Val(X) using Lemma 1.10 one obtains that for every open affine U C_ X" 

the equations ff~ = Ox,x, x e P(Ox(U)), hold. (1.1) yields J ( U )  = Ox(U), 
hence f f  = Ox. | 

The group IIvev(x) vF is partially ordered with the componentwise ordering. 

Furthermore, minima and maxima of finitely many elements exist in this group. 

Being a subgroup of l-Ivcv(x) vF the group Div(X) is partially ordered too, and 

the relations 

div(Z A ,.7) = max(div(Z), div(,7)), div((Z + J ) ^ )  - min(div(Z), d iv(J) )  

show that  Div(X) is closed under the formation of taking minima and maxima 

of finitely many elements. These relations are straightforward to prove and since 

we will not use them in this paper the proofs are omitted here. 
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2. Div i so r s  on  n o r m a l  var ie t i es  over  va lu a t i o n  d o m a i n s  

In this section we will apply the general results of the preceeding one to certain 

normal schemes X over an arbitrary valuation domain Or. These schemes are 

non-noetherian analogues of arithmetic varieties over a discrete valuation ring: 

Definition 2.1: Let Ov be a valuation domain. A Or-scheme X' is called a 

Or - va r i e t y  o f  r e l a t i ve  d i m e n s i o n  n E N if it satisfies: 

�9 X is integral, separated and of finite type over Spec(Ov). 

�9 The irreduzible components of all fibres X x o .  n(p), ~' E Spec(Ov), 

~(~) := Quot(Ov/~'), have dimension n. 

A Or-variety X should be understood as a totally ordered family of noetherian 

equidimensional n(p)-schemes of finite type. The phrase totally ordered refers to 

the fact that  the spectrum of a valuation ring is totally ordered with respect to 

inclusion. This fact is to a certain extent reflected by the specialization chains of 

points on A'. 

Concerning the dimension of the fibres of a O.-variety, there is a nice result, 

due to M. Nagata, that  simplifies our definition: 

2.2 ([Nag], Lemma 2.1): The dimensions of the irreducibel components of the 

fibres of an integral Or-scheme of finite type are all equal. 

As a consequence a Or-variety X has relative dimension n iff its generic fibre 

has dimension n. Nagata's result depends on the fact that an integral O.-algebra 

is flat. The latter holds due to the well-known equivalence of flatness and being 

torsionfree valid for modules over valuation domains. The flatness of an integral 

Or-algebra A has another consequence used at several points in this article: The 

Going-Down Theorem holds in the extension A]Ov, which in particular implies 

that for every prime ~ E Spec(Ov) every prime q E Spec(A) minimal among the 

primes containing ~,A lies over ~,. 

In the sequel we will consider a fixed O.-variety X over the valuation domain 

Ov with maximal ideal ~v ,  field of fractions K and corresponding valuation v of 

K. 

Residue classes a + ~v ,  a E Or, will be denoted by av; consequently Kv := 

O./~a,. 
To shorten notation the generic resp. closed fibre of X will be denoted by 

X = X x o .  K resp. Xv := X x o .  Kv. 

The investigations on the structure of :Deoh(X) will involve the set 7)(X) of 

Weil prime divisors of th e generic fibre X. If X is normal the set 

X 0) := {x E X I dim(Ox,x) = 1} 
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precisely equals the set of generic points of prime divisors P E P (X ) ,  and the 

local rings Ox,~, x E X (1), are discrete valuation rings. As usual the discrete 

normalized (i.e. with value group equal to Z) valuation corresponding to Ox,x 
will then be denoted by yR. 

Observe also that if X is normal, one has the equality X (1) -- P(X) ,  i.e. the 

associated points of X are precisely the generic points of Weil prime divisors. 

The generic points Gen(X xo~ ~(~)) := {x e X[ x generic point of X xo~ 

a(p)} of the other fibres will also play an important role: If X is normal the local 

rings Ox,x, x E Gen(X xo~ a(p)),  are valuation rings too, as will be proved later 

in this section. The corresponding valuations of the function field F = K(X)  are 

of a special type called constant reductions: 

Let FIK be a finitely generated field extension of transcendence degree r > 0. 

A prolongation v of v to F is called a c o n s t a n t  r e d u c t i o n  o f  F[K if the residue 

field extension F v IKv has transcendence degree r too. 

A special class of constant reductions are the Gaut] valuations: Consider the 

rational function field F = K ( x l , . . . ,  xr) of transcendence degree r over K.  The 

assignment 

z o,o  . . . . .  . . . . .  

" (nl,...,nr)el~" 

for polynomials ~ ,~, ,,~ a(nl nr)Z~ 1"'" Z'~ ~ 6 K[Xl,. , Xr] extends to a val- ( ... ) ..... .. 
uation of F prolonging v such that the elements xlv~_,..., xrv~_ are algebraically 

independent over Kv and hence Fvx_ = Kv(xlvx_,..., xrv~) is the rational func- 

tion field of transcendence degree r over Kv; vx_ is called the Gaut~ p r o l o n g a t i o n  

o f  v w i t h  r e s p e c t  t o  x := ( x l , . . .  ,xr) .  

It is well-known that  any constant reduction v of a finitely generated field 

extension F[K prolonging a given valuation v on K is a prolongation of a Gaut] 

valuation v~_ for a suitable transcendence base x_ = ( x l , . . . ,  xr) of F[K. 

For every p E Spec(Ov) the valuation corresponding to the valuation ring 

(Ov)p is denoted by v~. The fibre product X~ := X • (O~)~ = X Xo~ O~p 

is a O.~,-variety. For any x 6 X • o~ a(~') one has Ox,~ = Oxp,x. 

2.1 THE STRUCTURE OF THE GROUP OF (GENERALIZED) WEIL DIVISORS. The 

first step in studying Dcoh(X) of a normal Or-variety X is to verify that it satisfies 

the condition (*) introduced in Theorem 1.11. We therefore have to deal with 

coherence of the structure sheaf of such a scheme. 

The finiteness properties of algebras over a valuation ring Ov have been 

investigated by several authors. We collect the relevant results for the present 
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article in the following statement: 

2.3 ([Sab], Prop. 3, [Nag], Th. 3): Let Ov be a valuation ring. 

1. The polynomial ring O,[X1, . . . , Xn] in n variables is coherent. 

2. Every fiat finitely generated O~,-algebra A is of finite presentation. 

Consequently we get: 

THEOREM 2.4: The structure sheaf of an integral Or-scheme of finite type is 

coherent. 

Proof: Since coherence is a local property it suffices to treat the affine case 

X = Spec(A), A a finitely generated integral Or-algebra. By (A) at the beginning 

of the preceding section coherence of Ox is then equivalent to the coherence of 

the ring A. Now by (2.3 2.) an integral finitely generated Or-algebra is of finite 

presentation. Therefore A = Ov[X1,. . . ,  X,~]/I, where I is a finitely generated 

prime ideal of the polynomial ring Ov[X1,. . . ,  Xn]. 

By (2.3 1.) the polynomial ring O~[X1,. . . ,Xn] is coherent and by a basic 

property of coherent rings ([Gla], Th. 2.4.1) A is therefore coherent too. | 

COROLLARY 2.5: Any normal O~-variety X satisfies condition (,); in particular, 

(Dcoh(,~') of such a scheme is a group. 

Proof'. Theorem 2.4 implies that a normal O.-variety can be covered by spectra 

of normal coherent domains, which by (1.3) of subsection 1.1 are PvM-rings. The 

assertion now follows from (1.2) and Lemma 1.10. | 

By definition a (_9.-variety is quasi-compact, hence Theorem 1.14 shows that  

/3coh(X) of a normal O.-variety possesses a description in terms of the family 

V(X) introduced in subsection 1.2. The next step is therefore to determine these 

valuations resp. investigate the set Val(X). 

THEOREM 2.6: Let 2( be a normal O~-variety with field of rational functions F; 

then the following results hold: 

1. Val(X) = X 0) U U~P6Spec(Ov)... 0 Gen(X Xo~ ~(P)). 
2. {Ox,~[ x E X 0)} = {Ovp[ P E P(X)} ;  in particular these local rings are 

discrete valuation rings. 

3. For every p E Spec(Ov) the local rings Ox,x, x E Gen(X Xo. n(p)), are 

valuation rings of constant reductions of F[K prolonging vp. 

The proof of the main point 1 of this theorem is based on an application of the 

following version of nariski's Main Theorem: 
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2.7 ([Pes]): Let A be a finitely generated R-algebra. Let q E Spec(A) be a prime 
idea/satis[ying: 

�9 q is minimal and maxima/among the primes of A lying over q N R. 

Then there exists an R-algebra A' C_ A and an element t E A' \ q M A' such that 
A'[R is finite and A~ = At holds. 

We will apply (2.7) to prove: 

LEMMA 2.8: Let A be a tinitely generated O,-domain. Let q E Spec(A) be such 

that q M O, = p # 0 and q is not minimal among the primes containing ~,A. 

Then Spec(Aa) is not totally ordered by inclusion; in particular, the local ring 

Aq is no valuation ring. 

Proof." It suffices to prove the lemma for the case p = ~av: Otherwise replace A 

by A | (Ov)~. 

One first treats the case of a polynomial ring A = Ov[xl,.. . ,xn]: ~ . A  = 

~a~[xl , . . . ,xn]  is then a prime ideal and A/.~,,A = Kv[-2"~,...,~-~] is the 

polynomial ring in n variables over Kv. 

Let q be a prime ideal properly containing ~ [ x l , . . . , x n ] .  The prime ideal 

q / ~ , [ x l , . . . ,  xn] of the polynomial ring Kv[~-~,..., ~ ]  contains a monic prime 

polynomial f .  By GauB' lemma any f E q such that f + ~v[Xl , . . . ,xn] = 
is a prime polynomial; the prime ideal ]Ov[xl,. . . ,Xn] is of height 1. Hence q 

contains infinitely many prime ideals of height 1. Since these prime ideals are 

incomparable with respect to inclusion the spectrum of Aq is not totally ordered. 

Now one can prove the lemma in the general case: Let A be a finitely gener- 

ated Or-algebra and assume Aq to be a valuation ring, where q is a prime ideal 

that is not minimal among the primes containing m.A.  One shows that these 

assumptions lead to a contradiction. 

By assumption about q and since Spec(Aq) is totally ordered, there exists a 

unique prime p C q such that p is minimal among the primes containing ~ . A .  

The ring Aq/pAq is a valuation ring and a localization of the finitely generated 

Kv-algebra A/p. It follows that Aq/pAq is a discrete valuation ring and thus 

that there exists no prime between p and q. 

Let ~11,. �9 x--~ E A/p be Kv-algebraicaUy independent elements such that  the 

extension A/PiKv[~.l,...,~--~n] is finite. Choose foreimages X l , . . . , x n  E A of 

these elements; then Ov[x l , . . . ,  x,~] is a polynomial ring and by construction the 

equation p N O v [ X l , . . . ,  x n ]  : Mv[Xl . . . .  , x,~] holds. 

q is minimal and maximal among the primes of A lying over q0 := 

q N Ov[Xl, . . .  ,Xn]: If q were not maximal among those primes, q/p would not 
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be maximal among the primes of A/p lying over ~ := qo/Zav[xi,..., xn], which 

contradicts the finiteness of A/plKv[~E,... , x-~n]. 
Let qi C q be a prime lying over q0. Since the primes contained in q are totally 

ordered by inclusion one has qi C p or p C qi. Since there are no primes properly 

lying between p and q the second possibility cannot occur. On the other hand, 

q0 contains ~ v [ x i , . . . ,  xn], hence qi contains MvA. Since p has been chosen to 

be minimal among the primes containing ~vA,  the inclusion qi C p is impossible 

too. 

One can now apply (2.7) to the ring extension AlOv[xi, . . . ,  xn]: There exists 

a Ov[xi, . . . ,  x,,]-algebra A' finite over Ov[xi, . . . ,  xn] and an element t E A' \ q', 
' and therefore that q~ := qnA', such that  A~ = A,. In particular, one has Aq = Aq, 

Spec(A~,) is totally ordered. The Going Down Theorem in the finite extension 

A'lO~[xi,. . . ,  xn] now yields that  Spec(Ov[Xl, . . . ,  xn]qo) is totally ordered. 

On the other hand, q0 is properly containing ~ , [ x i , . . .  ,x,~]: It has already 

been shown above that  height(q/p) = 1 in A/p; again using finiteness height(~) 

= 1 too, hence q0 is properly containing z % [ x i , . . . ,  xn]. But then it follows from 

the first part  of this proof that  Spec (O , [x i , . . . ,  xn]qo) is not totally ordered - -  

the desired contradiction. | 

Proof of Theorem 2.6: Since X is dense in X one has Ox,x = Ox,x for any 

x E X (i). The latter local ring is a discrete valuation ring since X is a normal 

K-variety. 

Let x E Gen(X xov ~(~')); without loss of generality one can assume that  

v = ~av holds: Otherwise take the localization X x o~ Ovp, which is a normal 

(.gv~,-variety such that  x lies on its closed fibre. 

Choose an affine open neighborhood U C_ X of x; the Or-algebra A := Ox(U) 
is then finitely generated. Let q <1 A be the prime ideal corresponding to x. 

By definition of an Or-variety and the choice of x one has 

trdeg(A/qlKv ) = dim(A/q) = dim(A |  K) = t rdeg(FIK ). 

Therefore there exists a transcendence basis xi  . . . .  ,x~ E A of FIK such that 

xi  + q , . . . ,  xr + q is a transcendence basis of Quot(A/q)lKv. 
Working in the ring extension AlOv[xi,. . .  , xr] one obtains 

(2) q n o r [ x 1 , . . . ,  xr] = 

by the choice of the elements x~, i = 1 , . . . ,  r. By definition of the Gau• valuation 

the rings Or,_ and Ov[xi,...,xr]~a~[~l ..... x~] are equal, hence the normal ring Aq 
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contains the integral closure O of (9v~_ in F. The ring (9 is a Priifer ring, therefore 

Aq is a valuation ring (gv, which by (2) prolongs the Gaut3 valuation v~_ and 

therefore also v. Moreover, the residue field extension F v IKv has transcendence 

degree r, thus v is a constant reduction of FIK as asserted. 

The points 2 and 3 are now completely proved and to verify point 1 it remains 

to show that for any x E X such that x r X (1) uUT,espec(o~) .. 0 Gen(X xo~ ~(7,)) 
the local ring (gx,x is no valuation ring. For the points x E X lying on the generic 

fibre this is obvious, since the ring (gx,~ is then noetherian. 

For a point x E X xo .  ~(7,) \ Gen(X xo~ ~(7,)) choosing an affine open neigh- 

borhood U of x gives a prime ideal q E Spec((gx(U)), which is not minimal 

among the primes containing 7,(gx(U). Applying Lemma 2.8 now shows the 

assertion. I 

Let V7, denote the finite set of constant reductions of the function field F of 

X defined by the fibre X xo~ ~(7,), 7, E Spec(Ov) \ 0, according to point 3 of 

the preceding theorem. These sets occur in the valuation theoretic description of 

Div(A'); as we will see the set V := Vz4. is of particular interest. 

PROPOSITION 2.9: A normal (gv-variety X of relative dimension n has the 
properties: 

1. There exist subsets T7, E_ Gen(X xv~ ~(7,)), 7, E Spec((gv) \{0,.~v}, such 
that 

MaxVal(X) = X(1) U ( U Tp) UGen(Xv). 
79ESpec(O,~) \{0,.A4. } 

Let V~, C_ V~,, 7. E Spec((9.)\{O,z%}, be the subsets of Vp defined 
through {(9v7,1 v:p E V~.} = {(gx,.] x E TT,}; then 

" V ( X ) = { v p I P E ' P ( X ) } u (  U v~ , )  u v ,  
7,ESpec(Ov) \{O,.Mv } 

and therefore the div-homomorphism introduced in Theorem 1.1,1 is an 

embedding 

div : Z)coh(X) --+ Div(X) @ I-I ( 0  v'r, F )  @ ~ v F .  
7,E Spec(O,, ) \ {O,M,, } vT, E V7,' veV 

2. If  the structure morphism of X]O, is dosed the sets TT, are empty, hence 

the div-homomorphism becomes 

div: :Dcoh(X) ~ Div(X) @ ( ~  vF. 
vEV 
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Proo~ A Or-variety A' is by definition quasi-compact, which by Theorem 1.13 

implies the existence Of MaxVal(X). The existence of the sets T~, now follows 

from Theorem 2.6 point 1. The same theorem shows the inclusion Gen(Xv) C_ 

MaxVal(X). 

Furthermore, one always has the inclusion X (1) C_ MaxVal(X): Assume x ~ y 

for x E X (1), y E Val(X), y r x. Since x is the generic point of a prime divisor 

on the generic fibre X of X one has trdeg(~(x)iK) = dim(X) - 1 = n - 1. On 

the other hand, Theorem 2.6 point 1 shows that y E Gen(X x o .  n(~')) for p r 0 

holds; thus trdeg(~(y)[n(p)) -- n. The assumption x - ~  y consequently leads to 

the contradiction n - 1 _> n. 

The assertion about ~2(X) and the div-homomorphism in the general case are 

now clear. 

Assume next that  X has a closed structure morphism r X -4 Spec(Ov). 

For any x E Gen(X • n(p)) the set r  is by assumption closed, hence 

contains ~ v .  Therefore there exists a point y E X v  M {x}; let U be an affine 

open neighborhood of y and A := (Dx(U). Let qx resp. qy be the primes of 

A corresponding to x resp. y, so that qx C_ qy holds. A :-- A/qx is a finitely 

generated algebra over the valuation ring Ov := Ov/P with maximal ideal ~--~. 

Let ~ <1 A be a prime ideal minimal over ~--~A. Then by [Nag], Lemma 2.1 and 

the choice of x one has 

trdeg(A/~]Ov/-~-~) = trdeg(AiOv) = n. 

Hence there exists a prime q <1 A with the properties 

qx C q C_ qy, trdeg(A/qiKv) = n. 

The latter implies x ~ E Gen(Xv),  denoting by x r E A" the point corresponding to 

q, while the first property shows x -.z x'. This shows that  x is not maximal with 

respect to specialization among the points in U~,espec(o~)-. 0 Gen(X • t~(p)) 

unless x E Xv,  which proves the assertion. I 

Next, we have to investigate the image Div(X) of the homomorphism div. This 

is done by taking a closer look at those subschemes of X obtained by taking the 

Zariski closure of prime divisors of the generic fibre of X: Let P C X be a Weil 

prime divisor of X and denote by P C X the Zariski closure of P on X. P is 

then a closed irreducible subscheme of X carrying the induced reduced subscheme 

structure. The Ox-ideal defining the reduced subscheme structure on P will in 

the sequel be denoted by ~'p C OA'. 
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THEOREM 2.10: Let 2( be a normal O,-variety of relative dimension n; then for 

any prime divisor P E P(X) :  

1. tip is a coherent divisorial Ox-ideal: tip E Dcoh(X). 

2. P is a Or-variety of relative dimension n - 1. 

3. The map P ( X )  --+ 7)coh(X),P ~ tip extends to an injective group 

homomorphism t: Dip(X) -~ Dcoh(X) with the property 

VD E Div(X): div(t(D)) = D ~ 0 (see Proposition 2.9). 

Proof: 1. Let U C_ X be an affine open set such that PMU ~ ~; thenp  := tip(U) 

is a prime ideal with p M Ov = 0. Since Ox (U) is finitely generated over 0~ one 

has Ox(U)  = O , [ x l , . . . , x n ] / I  and p = q/ I  with a prime q of the polynomial 

ring Ov[xx, . . . ,  xn] lying over 0. By [Gla], Theorem 7.4.3 the prime q and hence p 

is finitely generated. Since Ox (U) is a coherent ring p is a coherent Ox (U)-ideal, 

and consequently tip is a coherent sheaf. 

By Theorem 2.6 point 2, Ox(U)p is a (discrete) valuation ring, hence p E 

Val(Ox(U)).  Applying (1.3) and (1.5 3.) yields p E Dt(Ox(U)) ,  which shows 

divisoriality of p because finitely generated t-ideals are divisorial. 

2. It only remains to check the dimensions of the fibres of P]O,.  Since the 

generic fibre of P is the prime divisor P C X, which has dimension n - 1, the 

assertion follows from (2.2). 

3. It suffices to prove div(tip) = P @ 0. Let y C X be the generic point of P; 

one has to check the relations ( J p ) ,  = Ox,~ for all x E MaxVal(X) \ {y}  and 
(Jp)y = Mx,y .  The latter holds by definition of P; furthermore, it is clear that 

(tiP)x = Ox,~ for all x C X (1). Finally, the relation P M Gen(X • ~(~')) r 0 

would contradict point 1 of Proposition 2.9, which shows (3"p)x = Ox, ,  for any 

x E Gen(X xo~ ~(P)). I 

The next result is for aesthetic reasons only formulated for the case of a normal 

O,-variety with closed structure morphism, but it holds for general normal O,- 

varieties with obvious modifications: 

COROLLARY 2.11: Let X be a normal O~-variety with closed structure mor- 

phism. Then there exists a subgroup Ver(X) _< ~)vev v F such that 

Div(X) = Div(X) @ Ver(X). 

Proof: Point 3 of Theorem 2.10 shows that Div(X) ~ 0 C_ Div(X) ~ (]~vev v F 

is actually a subgroup of Div(X), which proves the assertion. I 

The elements of Ver(X) are for obvious reasons called ver t ica l  divisors.  

Observe that  in contrast to the noetherian case neither the closed fibre of X nor 
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its irreducible components need to be (vertical) divisors, since the corresponding 

ideal sheaves are in general not coherent. 

The elements of the subgroup Div(X) ~ 0 are called horizontal  divisors. 

As already remarked in the affine case, the group Ver(X) will in general not 

be equal to ~vEv v F. We will close this section with a result that sheds some 

light on the structure of Ver(X): Define 

Ov := N Or; 
vEV 

this ring is a semilocal Priifer domain ([Kap], Th. 107). We will make use of the 

following well-known properties of Priifer domains: 

�9 A Priifer domain is a coherent PvM-ring, since its finitely generated 

fractionary ideals are invertible. 

�9 In a Priifer domain A the relation MaxVal(A) = MaxSpec(A) holds. 

Recall furthermore that invertible ideals of a semilocal ring are principal. 

Combining these facts one concludes Y(Ov) = V and from (1.4) in subsection 

1.1 that Div(Ov) is a group, which is explicitly given by 

Div(Ov) = {(v(a))~ev I a e F*}. 

Again the following result can easily be modified in such a way that one can drop 

the closedness assumption on the structure morphism. 

PROPOSITION 2.12: Let X be a normal Or-variety with closed structure mor- 

phism. Then: 

1. Div(Ov) <__ Ver(X). 

2. I fGen(Xv) posesses an atone open neighborhood then Ver(X) = Div(Ov). 

3. Ifdim(O~) = 1 for all v e V then Div(Ov) = Ver(X) = ~ e v v F .  

Proo~ 1. Any divisor D e Div(Ov) of the PvM-ring Ov is defined by a 

principal fractionary ideal nov,  a E F. The principal ideal sheaf aOx then 

defines the divisor div(aOx) = D' + D e Div(X) with D' E Div(X). According 

to Theorem 2.10 there exists ,7 C :Dcoh(X) such that div(J) = D'. Hence 

div((aOx(Ox : J ) ) - )  = D, which proves the assertion. 

2. Let J C :Dcoh(X) be such that div(J) e Ver(X). Let U be an affine open 

neigborhood of Gen(Xv). Then J (U)  is a finitely generated fractionary Oz (U)- 

ideal and Ox(U) C O v .  Hence J (U)Ov is a finitely generated thus invertible 

Ov-ideal, which by definition satisfies v(J(U)Ov) = v(3") for all v �9 V. 

3. By the approximation theorem [End], (11.17) the equality Div(Ov) = 

~ v e v  v F holds, which proves the assertion. I 
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2.2 THE LOCAL WEIL DIVISOR GROUPS AND CARTIER DIVISORS. Let A' be 

an integral scheme with coherent structure sheaf and function field F. The 

group CaDiv(X) of Cartier divisors on X can be identified with the group of 

invertible COz-submodules of the constant sheaf F ([Ha], Ch. II, Prop. 6.13). 

This identification fits the purposes of the present subsection, for which reason 

we always view Cartier divisors as invertible Ox-ideals. Since invertible (gx- 

ideals are divisorial and of finite type, CaDiv(X) is a subgroup of the semigroup 

 coh(X). 
As in the noetherian case those integral schemes having the property that  

CaDiv(X) = /)coh(X) are of particular interest. The extent to which /)coh(X) 

differs from CaDiv(X) is measured by the class semigroups of the local rings of A'. 

In this subsection we will therefore study the structure of the local Well divisor 

groups Div(Ox,x) in the points of a normal O,-variety X and give a criterion for 

:Pcoh(,~) to be equal to CaDiv(X). 
Let A be an integral domain; denote by 7-/(A) the multiplicative group of non- 

zero principal fractionary A-ideals. 7-/(A) is a subgroup of the semigroup/)~n(A) 

and one defines the class s emigroup  of  A as Cl(A) := l)~n(A)/7-l(A ). 

We are interested in the case Cl(A) = 0; in that case /)~n(A) = 7-/(A) is a 

group, that is, A is a PvM-ring. If, in addition, A is noetherian or, more general, 

a Krull ring then it is factorial. 

We will furthermore need the following simple result on the behavior of/)~n (A) 

in flat extensions of A: 

LEMMA 2.13: Let B]A be a flat extension of coherent domains. Then: 

1. The map s /P~n(A) --~ D~n(B),I  ~-~ I B  is welldefined and a group 

homomorphism. 

2. / f  Quot(A) -- Quot(B) the homomorphism l is surjective. 

Proof: The coherence of A implies that any I E D~n(A ) is finitely generated. 

This fact and the flatness of BIA yields (A :  I )B  = (B : IB)  ([Mat], (3.H.)). 

Since (A : I) is finitely generated too, one gets I B  = "[B = I"B, proving point 1. 

Any J E/)~n(B) is finitely generated: J = ~-:~ir=l Bbi. The fractionary ideal 

I := (~-~=1 Abi) ̂ e  29~n(A) satisfies I B  = ] =  J. | 

We start with a general result ensuring equality of Weil and Cartier divisors: 

PROPOSITION 2.14: 
1. Let X be an integral scheme with coherent structure sheaf and the property 

Vx e X: Cl(Ox,~) = O; 
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then CaDiv(X) = iDcoh(X). 

2. Let O be a local ring with maximal ideal M and X be an integral O-scheme 

with coherent structure sheaf and closed structure morphism. If  in addition 

X satisfies 

Vx E X x o  (.0/M: Cl(Ox,~) -- 0, 

then CaDiv(X) = "Dcoh(X ). 
In particular, this holds for O,-varieties with closed structure morphism. 

Proof'. The proof of point 1 is standard and will be omitted. 

Let r be the structure morphism of XIO. The set r C_ Spec(O), x E X, is 

closed, hence contains the maximal ideal M. This implies {x} M (X • o (O/M) r 0; 

it follows that  Ox,x is a localization of a local ring Ox,y, y E X x o  O/M. 

By Lemma 2.13, lifting of ideals in the fiat extension (,ox,xlOx,y gives a sur- 

jective homomorphism l)~n((Ox,y ) -+ T)~n((Ox,x), which maps principal ide- 

als to principal ideals. It therefore gives rise to a surjective homomorphism 

Cl(Ox,y) -e Cl(Ox,~). Since Cl(Ox,y) -- 0 by assumption this proves the asser- 

tion by point 1. I 

For the rest of the section let X again be a normal variety over the valuation 

ring Or. 
For any point x E X, the local ring Ox,~ by Corollary 2.5 and Theorem 

1.11 is a localization of a PvM-ring and therefore a PvM-ring itself ([Zaf], Cor. 

11). Consequently :D~n(Ox,~ ) resp. Div(Ox,~) are groups. In the study of 

their structure it suffices to investigate the case x E Xv  = X • Kv: If 

x E X = X x or K the local ring Ox,x is a localization of a finitely generated 

normal K-algebra, hence noetherian. Furthermore, any point x E X • a(~'), 

E Spec(Ov) \{0 ,  My}, lies on the closed fibre of the normal (Ov)~,-variety 

X Xo,, ((O,,)~,. 
To state the subsequent results in a geometrically intuitive way we introduce 

the following notations: By Theorem 2.6 1.+3., the irreducible components of 

the closed fibre Xv  of X are in bijection with the valuations in the set V; for any 

v E V the irreducible component corresponding to v via this bijection is denoted 

b y X v .  

Define rings 

OV~ :---- N Ov, Rx :--= N Ov P. 
v E V :  xEXv PE'P(X): xEP 

The ring (Ov~ is - -  for the same reasons as the ring Ov defined earlier in this 

paper - -  a semilocal Priifer ring. 
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THEOREM 2.15: Let X be a normal Or-variety and x �9 Xv. Then: 

1. R~ = (Or \ O)-lOx,~; in particular Rx is noetherian. 

2. Ox,x = Rz n Ovz; in particular Ox,x is a ring of Krull type. 

3. Div(Ox,.) = Div(R.) ~ Div(Ovz ). 

Proo~ 1. The ring (Or \ O)-lOx,x is noetherian since it is a localization of a 

finitely generated K-algebra. It is normal by assumption and therefore a Krull 

ring; the defining set of discrete valuation rings is given by the localizations at 

the prime ideals of height one, hence this set is equal to 

p �9 Spec(Ox,x): ht(p) = 1 , p n O ,  = 0} = {O, p I P  �9 P(X): x �9 P}. 

The latter set is precisely the defining set of discrete valuations of the Krull ring 

Rx. The assertion now follows, since Krull rings having the same set of defining 

valuation rings are equal. 

2. According to (1.5 1.+3.) the assertion will be proved once one can show 

MaxVal(Ox,.) = {aa.~ n Ox,xl x e P} u {za~ n Ox,.l x e Xv}. 

The inclusion _D follows from Proposition 2.9. Since Ox,,  is a localization of a 

finitely generated Or-algebra, Lemma 2.8 shows the reverse inclusion. 

Finally, Ox,~ is a ring of Krull type since Rx is of Krull type (even a Krull 
ring) and the semilocal Priifer ring Ov. is of Krull type too. 

3. According to point 2 the div-homomorphism associated to the PvM-ring 

OX,x gives an embedding 

divx:/)coh(Ox,x) --+ Div(nx) $ 1-I vF. 
vEV : x E X  v 

Any D E Div(Rx) can be understood as an element of Div(X), therefore by 

Theorem 2.10 there exists J E T)coh(X) such that div(J) = D, where div denotes 

the div-homomorphism associated to X. By Lemma 1.7 the stalk ~Tx is a divisorial 

Ox,x-ideal and by definition of divx one has divx(Jx) = D, which shows that 

Div(Rx) is a direct summand of Div(Ox,x): Div(Ox,x) = Div(Rx) ~ F. Using 

the same reasoning as in the proof of Proposition 2.12 one obtains F = Div(Ov,). 
| 

We close this subsection with the announced criterion for a Or-variety to satisfy 

CaDiv(X) = 7)coh(X): 
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THEOREM 2.16: Let X be a normal O.-variety. Then: 

1. For any point x ~ X v ,  one has 

Cl(Ox,~) -- 0 ~ Rz is factorial. 

2. If  the structure morphism of X is dosed and Gen(Xv) possesses an a//ine 

open neighborhood, one has 

t(Div(X)) C_ CaDiv(X) @ CaDiv(X) = 1)cob(X). 

Proof: 1. Rx satisfies R~ = (Or \ 0)-lOx,x;  applying Lemma 2.13 gives an 

epimorphism ~: l)~n(OX,x ) --+ ~ n  (Re). Since ~ maps principal fractionary ideals 

into such, it induces an epimorphism Cl(Ox,x) --+ Cl(Rx). This shows that  

Cl(Ox,x) = 0 implies Cl(Rx) = 0. Since a Krull ring with trivial class group is 

factorial ([Fos], Prop. 6.1) the assertion is verified. 

2. Assume the invertibility of all sheaves in the set t(Div(X)). By Corollary 

2.11 and Proposition 2.12 every sheaf f l  E ~)coh(X) has the form ,7 = (t(D)',71) ̂ , 

where D E Div(X) and div(,71) E Ver(X) hold. By Proposition 2.12, 2. and since 

Ov is a semilocal Priifer ring, there exists an a E Ov such that  div(aOx)  = 

E + div(,71), E E Div(X). The sheaf t (E)  is by assumption invertible, hence one 

obtains ,7 = (t(D) . aOx  . t ( E ) - l )  ^ =  t(D) . aOx  . t(E) - 1 E  CaDiv(X). 

The other implication is obvious. | 

Theorem 2.16 has an interesting connection to results obtained by P. Roquette 

and E. Kani in other contexts. This connection demonstrates applications of the 

results in the present paper, and it also shows the direction of further investi- 

gations: P. Roquette has proved in [Roq2] that for a proper normal curve X 

over a valuation ring Ov with algebraically closed field of fractions and normal 

closed fibre X v ,  the ring Rx is a principal ideal domain (Theorem 4.3). This 

is equivalent to saying that R~ is factorial: The function field F I K  of X is of 

transcendence degree 1 and R~ is normal and contains K,  thus it is a Dedekind 

ring. He formulates and proves this result in the language of valued function 

fields, but with the help of [GMP], Theorem 2.1 it can be translated into the 

form stated above. 

E. Kani has proved the inclusion t(Div(X)) C_ CaDiv(X) in point 2 for (Or- 

curves X of the form C x L Or, Ov an arbitrary valuation ring, L C (9 v a field 

and C a smooth L-curve ([Kanl], Hauptsatz 3.3 and [Kan2], Hauptsatz 3.6). 

Both results can be deduced from Theorem 2.16 in the same way one would do 

this in the case of a noetherian ring Or: The noetherian notion of regularity of a 

scheme can be generalized to non-noetherian schemes X with coherent structure 
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sheaf in such a way that a version of the theorem of Auslander-Buchsbaum holds: 

The local class groups Cl(Ox,x), x E 2', of such a scheme are all equal to 0. 

It can be shown that  a smooth Or-scheme X', where Ov is an arbitrary valuation 

ring, is regular in the generalized sense; thus its local class groups are 0. Since 

the O.-curves considered by Roquettc and Kani are smooth, applying Theorem 

2.16 gives the results cited above. 
The author will return to this subject in a subsequent paper - -  [Kn2]. 
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